Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus
نویسندگان
چکیده
BACKGROUND Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. METHODS Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 +/- 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. RESULTS One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p < 0.0001) across forearm occlusion durations. Differences in peak FMD were abolished when normalizing FMD to SSAUC (p = 0.785). CONCLUSION Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.
منابع مشابه
Adjusting flow-mediated dilation for shear stress stimulus allows demonstration of endothelial dysfunction in a population with moderate cardiovascular risk.
BACKGROUND/AIMS Although normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress (FMD:shear stress ratio) has been proposed to improve this measure of endothelial function, the clinical utility of FMD normalization has not yet been demonstrated. We tested (1) whether following conventional 5-min forearm occlusion, the FMD:shear stress ratio would discriminate a ...
متن کاملA Control Systems Approach to Quantify Wall Shear Stress Normalization by Flow-Mediated Dilation in the Brachial Artery
Flow-mediated dilation is aimed at normalization of local wall shear stress under varying blood flow conditions. Blood flow velocity and vessel diameter are continuous and opposing influences that modulate wall shear stress. We derived an index FMDv to quantify wall shear stress normalization performance by flow-mediated dilation in the brachial artery. In 22 fasting presumed healthy men, we fi...
متن کاملWhy is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging.
Flow-mediated dilation (FMD) is strongly dependent on arterial size, but the reasons for this phenomenon are poorly understood. We have previously shown that FMD is greater in small brachial arteries because the shear stress stimulus is greater in small brachial arteries. However, it is unclear why the shear stimulus is greater in small arteries. Furthermore, this relationship has not been inve...
متن کاملLocal Shear Stress and Brachial Artery Flow–Mediated Dilation
Endothelium-dependent flow-mediated dilation is a homeostatic response to short-term increases in local shear stress. Flow-mediated dilation of the brachial artery in response to postischemic reactive hyperemia is impaired in patients with cardiovascular disease risk factors and may reflect local endothelial dysfunction in the brachial artery. However, previous studies have largely neglected th...
متن کاملLocal shear stress and brachial artery flow-mediated dilation: the Framingham Heart Study.
Endothelium-dependent flow-mediated dilation is a homeostatic response to short-term increases in local shear stress. Flow-mediated dilation of the brachial artery in response to postischemic reactive hyperemia is impaired in patients with cardiovascular disease risk factors and may reflect local endothelial dysfunction in the brachial artery. However, previous studies have largely neglected th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular Ultrasound
دوره 6 شماره
صفحات -
تاریخ انتشار 2008